

Cryptography in Crypto

Jan Camenisch Head of Research

@janCamenisch

jan.camenisch.org

jan@dfinity.org

A *distributed* bulletin board

No trust in a single party, but in a majority, so less trust needed

Distributed Bulletin Board

Problem: Items are sent as input to (most) parties, but are received possibly in different order! Thus, parties need to agree on inputs and their order. How?

Millennial solution:

- Select a leader (lottery interesting crypto problem!)
- Leader makes proposal
- Parties sign proposal if they agree with leader
- Full agreement if >1/2 (or >2/3) signatures
- If no agreement start over (no proposal or insufficient sigs)

Not quite solved:

- Might have to start over quite a few times, so not really practical
- Who are the parties who participate?
- Running a distributed protocol often very costly

Blockchain solves this

- 1. Public lottery determine who can participate
 - 1. Need to limit amounts of times single individual can participate
 - 2. Anyone with sufficient computational power is allowed to participate
 - 3. Find pre-image of hash-function for output with last x bits = 0
- 2. Combine lottery with authentication of proposal by winner select leader:

Hash(item1, ..., item8, random) = $0x^{***}000000$

3. Eventual agreement, i.e., allow temporary disagreement (forks)

Blockchain continued

Interesting crypto problems:

1. Prove the security of this construction (see literature for more)

- what does it achieve?
- under what assumptions?
- under what adversarial models?

2. Huge drawback: uses way to much computational power, can we do better?

More Interesting Crypto Problems

How do we do a lottery?

Use a (pseudo) random function to select leader (i.e., list of ranked leaders):

- a. Global random function (random beacon)
 - requires multi-party computation
 - leader is known to all, potentially vulnerable to adaptive attacks
 - only top ranked leaders need to act
- b. Local random function
 - parties need be able to prove they executed function correctly: VRF
 - leader only known, if all parties have announced their results
 - protects better against adaptive attacks

Global random function (random beacon)

Requirements: threshold verifiable (pseudo)random function

Regularly provide fresh pseudo random (as soon as >1/2 or >2/3 decide new period has started)

Realization of random beacon

Idea: use non-interactive & unique threshold signature scheme

- $r_t = Hash(sig_x(time))$ is random in the random oracle model
- Signature scheme such that
 - with shared secret key $x \rightarrow x1, ..., xn$
 - Non-interactively reconstruct $sig_x(t)$ from $sig_{xi}(t)$
- Known candidates are RSA and BLS together with Shamir's Secret Sharing

BLS : Secret key: random $x \in \mathbb{Z}_q$, Public key: $y = g^x$,

Signature: $sig_x(time) = Hash(time)^x = \Pi(Hash(time)^{xi})^{\lambda i}$

[Cachin, Kursawe, Shoup '00,

Distributed Key Generation for BLS

- Recall $y = g^x$
- Generate public key and secret key shares distributedly and efficiently
- Notice: Shamir's secret sharing is linear:
 - Let p1() and p2() share s1 and s2, respectively
 - Then p() = p1() + p2() shares s = s1 + s2
- Thus, we can implement DKG by
 - Set of dealers each sharing random value & use NIZK that they did this correctly
 - Agree on dealers with correct NIZK (using bulletin board [©])
 - Locally sum up shares received from correct dealers
 - Works if at least one dealer is honest (although PK/SK could be biased)

Is this a secure construction?

Yes, secure, but actually non-trivial to prove!

Lots of building blocks are composed in the construction:

- Distributed generation of shares
- Proof of correct sharing via NIZKs
- Threshold version of a signature scheme
- Hash of signature to get randomness

Each property and building block needs to be properly defined

Need to show that they play together in a secure fashion!

• If overall scheme is not secure then one of the building blocks is not.

Provable Security – Why bother?

Cryptographic protocols w/out proper security analysis do get broken

- Bleichenbacher PKCS #1
- ISO Direct Anonymous Attestation, recent 5G attacks, no end here...
- Blockchains are an attractive target
 - Crypto was lost due to bad crypto, e.g., Zerocoin (370'000 coins out of thin air)
 - Bad protocol design in some cases (BitGrail \$170M lost, etc)
 - Indy/Sovrin BLS multi-sigs: rolled out with rogue-key vulnerability enabling forgeries
- Many more (unknowingly) broken protocols out there,
 - Often not analysed b/c it does not payoff

Why is security so hard?

Our world is turning into cyberspace

Still, we build apps thinking this

... but end up doing this

Computers never forget

- Data is stored by default
- Data mining gets ever better
- Apps built to use & generate (too much) data
- New (ways of) businesses using personal data

- Humans forget most things too quickly
- Paper collects dust in drawers

But that's how we design and build applications!

A cyberspace full of enemies

5

lacksquare

•

Today's IT stack is too complex to make secure

An insecure component, a misconfiguration, a bad line of code, and... hackers can get in!

Don't believe in data hungry aliens?

Marriott

350 million (2018)

Anthem.

78 million (2015)

THE STAT

56 million (2014)

EQUIFAX

143 million (2017)

ebay⁻ 145 million (2014)

YAHOO!

3 billion (2013)

PlayStation.

77 million (2011)

JPMORGAN CHASE & CO.

AdultFriendFinder`

412 million (2016)

76 million (2014)

• TARGET. 110 million (2013)

RSA 40 million (2011)

$\mathbf{c}\mathbf{c}$

Crypto means cryptography....

⁽³⁾bitcoin

Secure asset transfer system

Crypto means cryptography...

⁽³⁾ bitcoin Secure asset transfer

Crypto means cryptography...

Secure smart contract

Crypto means cryptography...

The ICP protocol will create a thick Internet & a serverless cloud

The Internet will become a distributed OS that also hosts and runs software and services

New "open internet services" will eliminate platform risk

Open internet services, and shared pan-industry business protocols, will become part of the Internet itself

Conclusions

Cyberspace is not earth as we know it

- Crypto protocols can make it secure!
- Provable security matters and very hard!
- Tons of research needed

Let's do some rocket science!

@janCamenisch

jan.camenisch.org

jan@dfinity.org